

Molecular Modeling & Visualization Course

BIC

THIBAULT TUBIANA CHLOÉ QUIGNOT FABRICE LECLERC RAPHAEL GUEROIS

- Do you all have internet? (Eduroam or Guest WiFi)
- Do you all have ChimeraX installed?

Instructions for Guest WiFi:

- 1) Connect to I2BC_ENREGISTREMENT,
 - It should open an internet window
 - if not, type the following in a browser: <u>http://198.18.34.1</u>
- 2) Enter your first name, last name and email address
 - "Personne visitée" :
 - chloe.quignot@i2bc.paris-saclay.fr
 - Note down the code that was given
- ³⁾ Wait for us to confirm your request, then connect to **I2BC_ACCESS** and type your code

nregistrez-voi	us pour accéder au réseau.
Prénom*	Your name
Nom*	Your name
E-Mail*	Your email
chloe.	quignot@i2bc.paris-saclay.fr
	S'enregistrer

Who are we? Who are you?

Let's get to know each other!

- Thibault Tubiana (B3S/IMAPP, I2BC/CEA)
- Raphaël Guerois (B3S/AMIG, I2BC/CEA)
- Fabrice Leclerc (GENOMES/SSFA, I2BC)
- Chloé Quignot (BIOI2, I2BC/CEA)

Course material

https://bioi2.i2bc.paris-saclay.fr/training/visu-struct/

/!\ this presentation is password protected, type "alphafold" to unlock

cnrs

BIOI2 discussion group

https://framateam.org/bioi2/channels/formation-3d-protein-manipulation and https://framateam.org/bioi2/channels/alphafold2i2bc

To join, **create** yourself an account on FramaTeam using your I2BC account ("s'inscrire"): <u>https://framateam.org/signup_user_complete/?id=y44u7h1x9jbyikhzmtbb6bw3hc</u>

Summary

PART 1 – introduction to the 3D world of proteins

- 1. Protein structures, what are they?
- 2. Where to find them?
- 3. How to visualise them?

PART 2 – First steps with AlphaFold

- 1. What is AlphaFold?
- 2. How to use AlphaFold?
- 3. How to understand predictions?

<u>1. Protein</u> structures: what are they?

PART I

- Proteins play diverse roles in the human body : Building, Repairing, Signaling, Defending....
- Experimental Methods or advances *in silico* methods can be used to obtain the atomic structure/model of proteins

These are all representations of proteins or complexes of proteins

Proteins are everywhere

3D Whole Cell Model of a Mycoplasma Bacterium

Made by Martina Maritan

Proteins are everywhere, mobile

11

Α		Name	Mw	#			Name	Mw	#	
	۲	Adk	24	14			GapA	142	1()
	٥	AhpC	187	7		-	GlnA	621	1	
		Asd	80	4		-	GltD	94	3	
	٠	Вср	11	8			GlyA	91	1	5
	۹	CspC	7	72			GpmA	55	4	
	-	CysK	64	13		٠	Hns	5	7	
	-	DapA	125	2			Hup	15	12	2
	-	DnaK	41	11		۰	IcdA	92	43	3
	*	Efp	20	14		-	IlvC	54	18	3
		Eno	91	18			Mdh	65	13	3
	-	Fba	78	6			MetF	84	21	3
	~	Frr	21	7			Meth	04		-
	-	FusA	69	22			Мор	845	2	
		Name	Mw	#			Name	M	w	#
		PanB	140	2		۲	Suc	1	42	4
		Pgk	41	26		\$	Tig		48	9
		Pnp	190	3		-	TpiA 5		54	5
1	5	Рра	116	9		*	Tsf	Tsf 6		12
				1.	- I	-		ГufA		
1	•	PpiB	18	7			TufA	- 3	84	181
	•	PpiB PurA	18 94	7 4			TufA Upp		84 45	181 11
	•	PpiB PurA PurC	18 94 42	7 4 7		•	TufA Upp UspA		84 45 31	181 11 7
8	•	PpiB PurA PurC Pyr	18 94 42 308	7 4 7 3		•	TufA Upp UspA 50S	1,3	84 45 31 55	181 11 7 10
	• •	PpiB PurA PurC Pyr RpiA	18 94 42 308 46	7 4 7 3 3		•	TufA Upp UspA 50S 30S	1,3	84 45 31 55 88	181 11 7 10 10
	* • • •	PpiB PurA PurC Pyr RpiA Rpo	18 94 42 308 46 260	7 4 7 3 3 4		· · · · · · · · · · · · · · · · · · ·	TufA Upp UspA 50S 30S tRNA-C	1,3	84 45 31 55 88 24	181 11 7 10 10 37
	•	PpiB PurA PurC Pyr RpiA Rpo SerC	18 94 42 308 46 260 79	7 4 7 3 3 4 11		•••	TufA Upp UspA 50S 30S tRNA-Q	1,3	84 45 31 55 88 24 24	181 11 7 10 10 37 37
	•	PpiB PurA PurC Pyr RpiA Rpo SerC SodA	18 94 42 308 46 260 79 46	7 4 7 3 3 4 11 13		• • •	TufA Upp UspA 50S 30S tRNA-C tRNA-Q tRNA-F	1,3	84 45 31 55 88 24 24 25	181 11 7 10 10 37 37 37 37

McGuffee SR, Elcock AH, 2010. PLoS Comput Biol 6(3): e1000694.

Proteins are everywhere, mobile, interacting

Yu, I., Mori, T., Ando, T., Harada, R., Jung, J., Sugita, Y., & Feig, M. (2016). Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. In eLife (Vol. 5). eLife Sciences Publications, Ltd. https://doi.org/10.7554/elife.19274

Proteins are made up of amino acids, which interact to form a 3D structure

• https://en.wikipedia.org/wiki/Protein_secondary_structure

Amino acids can be regrouped into families of similar properties (hydrophobic, hydrophilic, charged...)

They all have the same "frame":

-> 1 amino and 1 carboxyl group with which they hold hands with others (=> they're part of the "backbone")

-> a carbon (Cα) which carries the **side** chain

COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem
 Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

- Many chemical interactions stabilize proteins (polypeptides)
- Amino acids link together through peptide bonds => Primary structure

Interaction	Distance dependence	Typical distance	Free energy (bond dissociation enthalpies for the covalent bonds)	
Covalent bond	-	1.5Å	356kJ/mole (610kJ/mole for a C=C bond)	-Ca-C-

- Many chemical interactions stabilize proteins (polypeptides)
- Secondary structures are locally folded structures, mainly held by Hydrogen bonds (H-bonds) The most common secondary structures are α-helices and β-sheets... but there are others

Interaction	Distance dependence	Typical distance	Free energy (bond dissociation enthalpies for the covalent bonds)		Deimer	Met Asp Arg Val Gly Ile Lys Val Asp Leu N-terminus Phe Ala Leu Gln Ser Leu Jys Leu Ala C-terminus
Covalent bond	-	1.5Å	356kJ/mole (610kJ/mole for a C=C bond)	-Ca-C-	hydrogen bonds	
Hydrogen bond	Donor (here N), and acceptor (here O) atoms <3.5Å	3.0Å	2-6kJ/mole in water 12.5-21kJ/mole if either donor or acceptor is charged	N-H 0=C	chain peptide groups	β-Sheet (3 strands) α-helix
					Tothory	
						Monomer 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- Many chemical interactions stabilize proteins (polypeptides)
- Secondary structures are locally folded structures, mainly held by Hydrogen bonds (H-bonds)

α-helices are right-handed
helices stabilized by Hbonds between the C=O
group of residue "i" and the
N-H group of residue "i+4"

Want to know more?

F. Rico, A. Rigato, L. Picas, and S. Scheuring, "Mechanics of proteins with a focus on atomic force microscopy," Journal of Nanobiotechnology, vol. 11, no. Suppl 1, p. S3, 2013.

http://proteopedia.org/wiki/index.php/User:Stephen_Mills/Secondary_Structure: Helices

- Many chemical interactions stabilize proteins (polypeptides)
- Secondary structures are locally folded structures mainly held by Hydrogen bonds (H-bonds)

β-sheets are made of laterally connected β-strands, stabilized by H-bonds, and forming a usually twisted, pleated sheet

Want to know more ?

http://proteopedia.org/wiki/index.php/User:Stephen_Mills/Secondary_Structure:_Helices

F. Rico, A. Rigato, L. Picas, and S. Scheuring, "Mechanics of proteins with a focus on atomic force microscopy," Journal of Nanobiotechnology, vol. 11, no. Suppl 1, p. S3, 2013.

- Many chemical interactions stabilize proteins (polypeptides)
- Secondary structures are locally folded structures mainly held by Hydrogen bonds (H-bonds)

β-sheets are made of laterally connected β-strands, stabilized by H-bonds, and forming a usually twisted, pleated sheet

They can be parallel or antiparallel according to the relative orientation of the β -strands

Want to know more?

http://proteopedia.org/wiki/index.php/User:Stephen_Mills/Secondary_Structure:_Helices

F. Rico, A. Rigato, L. Picas, and S. Scheuring, "Mechanics of proteins with a focus on atomic force microscopy," Journal of Nanobiotechnology, vol. 11, no. Suppl 1, p. S3, 2013.

• Many chemical interactions stabilize proteins (polypeptides)

20

- **Tertiary structure** = the overall 3D structure of polypeptides
- Some proteins are made up of multiple polypeptide chains (subunits) = **Quaternary structure**

Interaction	Distance dependence	Typical distance	Free energy (bond dissociation enthalpies for the covalent bonds)			Primary	Met Asp Arg, Val Gly N-terminus Phe Ala Leu Gln S	Ile Lys Val Asp Leu er Leu Leu Ala C-terr
Covalent bond	-	1.5Å	356kJ/mole (610kJ/mole for a C=C bond)	-Cα-C-		ndary		
Hydrogen bond	Donor (here N), and acceptor (here O) atoms <3.5Å	3.0Å	2-6kJ/mole in water 12.5-21kJ/mole if either donor or acceptor is charged	N−H D=C	[Secol	β-Sheet (3 strands)	α-helix
Disulfide bond	-	2.2Å	167kJ/mole	CysSCys	multiple bonds/ forces:	Tertiary		
Salt bridge	Donor (here N), and acceptor (here O) atoms <3.5Å	2.8Å	12.5-17kJ/mole may be as high as 30kJ/mole for fully or partially buried salt bridges, less if the salt bridge is external	- C 0 - H-N-H 0 H	- hydrophobic interactions for protein folding, - hydrogen & disulfide			
Long-range electrostatic interaction	Depends on dielectric constant of medium. Screened by water. 1/r dependence	Variable	Depends on distance and environment. Can be very strong in nonpolar region but very weak in water	- C (- H-N-H - C (- H	maintaining the stable structure	uaternary	Monomer	nomer 1 Monomer
Van der Waals interaction	Short range. Falls off rapidly beyond 4Å separation. 1/r^6 dependence	3.5Å	4kJ/mole (4-17 in protein interior) depending on the size of the group (for comparison, the average thermal energy of molecules at room temperature is 2.5 kJ/mole)	н н -С-Н Н-С- Н Н-С-		ð		

Protein world - coordinate system

- Proteins are 3D objects => described by 3D coordinates => (x, y, z) per atom
- Saved in a text file with a set syntax according to chosen format (.pdb, .cif, ...)

21

Protein world – data structure

• .pdb file structure, 1 line per atom (ids, types & coordinates), fixed length columns

PROBLEM!!!: 99999 atoms ID max (after all atoms are 99999 or start from 1 again)

Protein world – data structure

 .cif (PDBx/mmCIF) file structure – more recent – 1 line per atom but more flexible/less limitations, supporting data representing large structures, complex chemistry, and new & hybrid elements

loop_ <			- Each block starts with 1000
_atom_site.group_PDB			
_atom_site.id			
_atom_site.type_symbol			
_atom_site.label_atom_id			
_atom_site.label_alt_id			
_atom_site.label_comp_id			
_atom_site.label_asym_id			
_atom_site.label_entity_id			
_atom_site.label_seq_id			
_atom_site.pdbx_PDB_ins_code			
_atom_site.Cartn_x		}	A first section to describe the columns
_atom_site.Cartn_y			L - L -
_atom_site.Cartn_z			DEIOW
_atom_site.occupancy			
_atom_site.B_iso_or_equiv			
_atom_site.pdbx_formal_charge			
_atom_site.auth_seq_id			
_atom_site.auth_comp_id			
_atom_site.auth_asym_id			
_atom_site.auth_atom_id			
_atom_site.pdbx_PDB_model_num			
ATOM 1 N N . VAL A 1	1 ? 6.204 16.869 4.854 1.00 49.05 ? 1 VAL A N 1		
ATOM 2 C CA . VAL A 1	1 ? 6.913 17.759 4.607 1.00 43.14 ? 1 VAL A CA 1	L	1 atom per line each column (labelled
ATOM 3 C C . VAL A 1	1 ? 8.504 17.378 4.797 1.00 24.80 ? 1 VAL A C 1	L	r atom per nine, caen column (labened
ATOM 4 0 0 . VAL A 1	1 ? 8.805 17.011 5.943 1.00 37.68 ? 1 VAL A 0 1	L }	above) is separated by white space
ATOM 5 C CB . VAL A 1	1 ? 6.369 19.044 5.810 1.00 72.12 ? 1 VAL A CB 1	L	
ATOM 6 C CG1 . VAL A 1	1 ? 7.009 20.127 5.418 1.00 61.79 ? 1 VAL A C61 1	L	
ATOM 7 C CG2 . VAL A 1	1 ? 5.246 18.533 5.681 1.00 80.12 ? 1 VAL A CG2 1	L	

Protein world – coordinate system

- Be careful of the unit !!!
 - Ångström (Å) : (10⁻¹⁰ m)
 - nanometer (nm) : (10⁻⁹ m)

Protein world - coordinate system

- Be careful of the unit !!!
 - Ångström (Å) : (10⁻¹⁰ m)
 - nanometer (nm) : (10⁻⁹ m)

Most used unit

Remember the Mars Climate Orbiter incident from 1999?

PART I

Protein world – Get the structures

For your own culture

- How to determine 3D protein structures??
 - <u>Crystallography</u>
 - Compute electronic density from Xray diffraction
 - <u>Nuclear Magnetic Resonance (NMR)</u>
 - Compute models from distance between amino acids
 - <u>Cryo-EM</u>
 - Compute electronic density from electronic microscopy pictures
 - <u>Modelling</u>
 - Compute a model 'from scratch' (de novo or based on an existing 3D structure)

Where to find structures ?

→ Protein Data Bank (PDB) with >226K experimental structures (october 2024)

Experimental structures

RCSB PDB web site also includes >1M models from AlphaFold DB and ModelArchive

Where to find structures ?

→ AlphaFold Database (214M+ models, including 48 complete proteomes) <u>https://alphafold.ebi.ac.uk</u>

Models

Contains approx. all proteins from UniProt, excluding viral proteins and proteins exceeding their sequence length range (>16AA & <1280AA for UniProt / <2700AA for proteomes) - <u>url</u>

Where to find structures ?

→ ESM Metagenomic Atlas (772M+ models) (<u>https://esmatlas.com/explore</u>)

Models

Based on protein sequences in the MGnify database

Where to find structures ?

→ Or simply... Uniprot (<u>https://www.uniprot.org</u>)

Seq + Structure (database links)

Teacher Demo From sequence to structure: querying DBs

What protein is this? Do we have a structure or model for it in the public databases?

MRIFAVFIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIVYWEME DKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCMISYGG ADYKRITVKVNAPYNKINQRILVVDPVTSEHELTCQAEGYPKAEVIWTSSDHQVLSGKTT TTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTH LVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSKKQSDTHLEET

Teacher Demo From sequence to structure: querying DBs

All

What protein is this? Do we have a structure or model for it in the public databases?

MRIFAVFIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIVYWEME DKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCMISYGG ADYKRITVKVNAPYNKINQRILVVDPVTSEHELTCQAEGYPKAEVIWTSSDHQVLSGKTT TTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTH LVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSKKQSDTHLEET

/!\ watch out for invisible characters when copy-pasting

> Protein Blast (blastp) - through UniProt: <u>https://www.uniprot.org/blast</u>

Swissprot : Only reviewed sequences

Teacher Demo

From sequence to structure: querying DBs

Blast output summary page:

BLAST 250 results found in UniProtKB

Overview Taxonomy Hit Distribution Text Output Input Parameters API Request

BLAST Align 🔻 Map IDs 土 Download 🖆 Add 🔟 Customize columns 🕼 Resubmit

Entry	Entry Name	Protein Names	Gene Names	Organism	Length	20	40	60	80	100	120	140	160	180	200	220	240	260	280	
Q9NZQ7	PD1L1_HUMAN	Programmed cell death 1 ligand 1	CD274, B7H1, PDCD1L1, PDCD1LG1, PDL1	Homo sapiens (Human)	290 AA												1	.00% 1	11 0	
A0A2R9B063	A0A2R9B063_PANPA	CD274 molecule	CD274	Pan paniscus (Pygmy chimpanzee) (Bonobo)	290 AA												9	9.7%	03_0	
H2QWZ8	H2QWZ8_PANTR	CD274 molecule	CD274	Pan troglodytes (Chimpanzee)	290 AA												9	9.7%	03_0	
G3QZN5	G3QZN5_GORGO	CD274 molecule	CD274	Gorilla gorilla gorilla (Western lowland gorilla)	290 AA													99% 14	86 0	
☐ H2PS75	H2PS75_PONAB	CD274 isoform 2[]	CD274, CR201_G0001691	Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)	290 AA												9	8.6% 14	80 0	

This protein is reviewed!

Teacher Demo From sequence to structure: querying DBs

UniProt summary page for the best hit (Q9NZQ7):

All data about the protein

Function	🎦 Q9NZQ7 · P	D1L1_HUMAN											
Names & Taxonomy	Protein ⁱ	Protein ⁱ Programmed cell death 1 ligand 1 Amino acids 290 (go to sequence)											
Subcellular Location	Gene ⁱ	Gene ⁱ CD274 Protein existence ⁱ Evidence at protein level											
Disease & Variants	Status ⁱ	UniProtKB reviewed (Swiss-Prot)	Annotation score ⁱ	63									
PTM/Processing	Organism ⁱ	Homo sapiens (Human)											
Expression Interaction Structure Family & Domains Sequence & Isoforms Similar Proteins	Entry Variant viewer Feat BLAST Align & Download • & Function ⁱ Plays a critical role in induction ar As a ligand for the inhibitory recept Through a yet unknown activating The PDCD1-mediated inhibitory p The interaction with PDCD1/PD-1 The blockage of the PDCD1-med	Add Add a publication Entry feedback Add Add a publication Entry feedback and maintenance of immune tolerance to self (PubMed:11015443, PubMed:28813417, F ptor PDCD1/PD-1, modulates the activation threshold of T-cells and limits T-cell effector greceptor, may costimulate T-cell subsets that predominantly produce interleukin-10 (IL bathway is exploited by tumors to attenuate anti-tumor immunity and escape destruction I inhibits cytotoxic T lymphocytes (CTLs) effector function (By similarity). iiated pathway results in the reversal of the exhausted T-cell phenotype and the normali	PubMed:28813410). response (PubMed:11015443, PubMed:28813417, PubMed:288134 10) (PubMed:10581077). 📕 4 Publications by the immune system, thereby facilitating tumor survival (PubMed:2 zation of the anti-tumor response, providing a rationale for cancer imm	410). 8813417, PubMed:28813410). nunotherapy (By similarity).									

Let's check if we have a structure

Teacher Demo

From sequence to structure: querying DBs

UniProt summary page for the best hit (Q9NZQ7):

SOURCE Select *	IDENTIFIER	METHOD Select 🔻	RESOLUTION	CHAIN	POSITIONS	LINKS	Download the co => it's a text file	oordinates
PDB	7C88	X-ray	2.00 Å	C/M	1-136	PDBe · RCSB-PD	B · PDBj · PDBsum	🛓 · Foldseek
PDB	7CZD	X-ray	1.64 Å	B/D	19-134	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
PDB	7DCV	NMR		A	232-290	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
PDB	7DY7	X-ray	2.42 Å	A/B	18-134	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
PDB	7NLD	X-ray	2.30 Å	A/B/C/D/E/F	18-134	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
PDB	70UN	X-ray	1.90 Å	А	17-134	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
PDB	7SJQ	X-ray	2.00 Å	А	18-134	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
PDB	7TPS	X-ray	3.15 Å	B/D	19-227	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
PDB	7VUN	X-ray	2.70 Å	A/B/C/D/E/F/G/H	18-134	PDBe RCSB-PD	B · PDBj · PDBsum	📥 · Foldseek
AlphaFold	AF-Q9NZQ7-F1	Predicted			1-290	AlphaFold		🛓 · Foldseek

Yes! Plenty of structures covering different regions of our protein:

- 49 experimental structures (47 X-ray + 2 NMR) on segments
- 1 predicted structure (AlphaFold) of the whole sequence

Teacher Demo From Structure to structure: FOLDSEEK

PART I

Protein viewers

ChimeraX

Free Protein viewers

- <u>Standalone softwares</u>
 - Pymol (educational version free, or open source version
 - VMD
 - UnityMol
 - ChimeraX
- Web based
 - 3DProteinImaging
 - Molstar
 - NGLViewer

About ChimeraX

- ChimeraX is the new version of USCFChimera and is free (for academic) and available on every platform
- Optimized for CryoEM data and large systems as well
- No ray tracing engine, but can generate smooth images

Step 1 – load a structure

Either directly from the databases: File > Fetch by ID

Or by loading a file on your computer: File > Open or Home > Open

Step 2 – move your protein around

Rotate and move

42

Left-click + hold on the protein: => move it about on vertical & horizontal axis

Left-click + hold on the background: => rotate it about clockwise or anticlockwise

Select regions

or

Ctrl + Left-click + hold & drag: => select a zone on your protein

Ctrl + Left-click outside of the protein to unselect

More functions in *Menu Bar > Right Mouse* e.g. Menu Bar > Right Mouse > Select

The "Right Mouse" menu defines what action is

associated to the right

Different outfits for different occasions

Show/hide

."Atoms" view, several visualization options
> in <u>Styles</u>, you can choose between:
"Sticks", "Spheres" or "Ball stick" (for proteins) or "Plain" (for DNA)
."Cartoons" view (default)

."Surfaces" view

"Atoms" - Sticks

"Atoms" - Spheres

"Atoms" - Ball sticks

"Cartoons"

"Surfaces"

Visualisations & when to use them

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/representation.html

Your turn!

https://bioi2.i2bc.paris-saclay.fr/training/visu-struct/course-material/

type "alphafold" to

unlock

INSTITUT FRANCAIS DE BIOINFORMATIO

Saving images

It's an art to itself!

Keys for a good vizualisation

Image format

Image format

Before publication you should compress your TIFF with LZW Compression

- Online with Pace (which also check image problem for publication) <u>https://pacev2.apexcovantage.com</u>
- Command line : convert input.tiff -compress LZW output.tiff

DPI / PPI

DPI (Dots Per Inch) or **PPI** (Pixels Per Inch) measure the **image resolution** → number of individual dots (or pixel) that can be display within a square inch.

ChimeraX

SuperSampling

Supersample 8x

ChimeraX – Styles

Saving images in ChimeraX

Graphically

	ChimeraX		>	<			
<u>File</u> <u>E</u> dit Select <u>Actions</u> <u>T</u> ools Fa <u>v</u> orites Prese	ets <u>H</u> elp						
Open Ctrl+O eotides Graphic	s Map Medic	al Image Markers Rig	ht Mouse ISOLDE				
Open DICOM Folder	555	/ 👌 🎜 🗌					
Save Ctrl+S Spin Show Hid	le Show Hide	Stick Sphere Ball Whi	te Black	>>			
Close Session	Castagas	stick	karauad				
Quit Ctrl+O	Cartoons	Styles Bac	kground 🛛				
Zara anti-d		You c	an double click a	-			
		mode	el's Name or ID in the				
3	(A. 6. 17)	mode	el panel to edit those				~
AN TO AN	Save File						×
The second se		-					~ ~ ~
	Look in:	C:\Users\tubia	OneDrive\Workc\C	NRS2022\training\chir	meraX 🗸	O O O	🎑 🖽 🗐
		N	^	C	-	Data Marifica d	
	My Co	mputer Name		Size	іуре	Date Modified	
	tubia						
کـــ							
Command							
commund.							
	Ella anna a	ahim an Yadafaulta					
	File name:	chimerax_derault.p	ing				Jave
	Files of type:	PNG image (*.png)				~	Cancel
						0	Transparent
	Size: 992	x <u>811</u>	preserve aspect	Supersample:	None ~	\cup	background
	/						T
				/			
	/						\
Pasa	lution		SuperS	ampling			1
Reso	iution		Supere	surpring.			
			(hottor	Quality			1
			lanau	Quality)			1
							1

Or through command line:

Type the following command in the command box: save img.png width 1600 supersample 8 trans True

Transparent Background

Example with *Pymol*

Screenshot:

+ Fast and dirty

- Bad Quality
- Bad resolution
- No background transparency
- No shadows
- No Antialiasing

Do not do that!

Example with Pymol

Screenshot:

+ Fast and dirty

- Bad Quality
- Bad resolution
- No background transparency
- No shadows
- No Antialiasing

Do not do that!

+ Always think about the final resolution of your figure in the paper!

Example with Pymol

Draw (draw) :

- + Fast
- + Better Quality
- + Resolution can be set
- + Antialiasing
- No background transparency
- No shadows

File Edit Build Movie Display Setting Scene Mouse Wizard Plugin Help Detected OpenGL version 4.6. Shaders available. Detected GLSL version 4.60. OpenGL graphics engine: GL_VENDOR: NVIDIA Corporation GL_RENDERR: NVIDIA GeForce RTX 2070 SUPER/PCIe/SSE2 GL_VERSION: 4.6.0 NVIDIA 535.98 License Expiry date: 30-nov-2024 Detected 16 CPU cores. Enabled multithreaded rendering.

 Reset
 Zoom
 Orient
 Draw/Ray

 Unpick
 Deselect
 Rock
 Get Vier

 I
 < Stop</td>
 Play
 > J
 MCleas

 Builder
 Properties
 Rebuild

 Undo
 Redo

Vidth	640px		+	10,84cm	-				
leight	515px		*	8,72cm	*				
Re	set			🕗 Lock as	pect ratio				
Inits (cm v	at	150		PI				
transparent background ("Ray" only)									
Dra	aw (fast)		- or -	Ray (slow)				

Example with *Pymol*

Ray Tracing (ray) :

- + Fast
- + Better Quality
- + Resolution can be set
- + Antialiasing
- + Background Transparency
- + Shadows

- Slower

Example with Pymol

Ray Tracing (ray) :

- + Fast
- + Better Quality
- + Resolution can be set
- + Antialiasing
- + Background Transparency
- + Shadows

- Slower

Learn to Play with Parameters!

Default

util.performance(0)

util.performance(0)
set ambient, 0.6
set specular, 0
set ray_trace_mode, 1
set ray_trace_color, black
set ray_trace_gain, 0.1
set antialias, 2

<u>1. What is</u> <u>AlphaFold?</u>

PART II

Protein modeling : sequence to structure

$CASP\,(Critical\ Assessment\ of\ protein\ Structure\ Prediction):$

Contest for *de novo* protein structure prediction

"aim at establishing the current state of the art in protein structure prediction, identifying what progress has been made, and highlighting where future effort may be most productively focused." https://predictioncenter.org

Olympic games for protein folding

AlphaFold 2.0

DeepMind

AlphaFold 2.0

DeepMind

Protein modeling : sequence to structure Homology modeling De novo modeling Template structure *(reference)* Target sequence MRSSASRLSSFSSRDSLWNRMPDQI[...]SFVHILSD Target sequence MDIGINSDPHPPHHHDHHGHGSGW [...] DHHHGDHHH Target Model Target Model

The full process may seem quite complex at first sight....

Jumper, J. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2

In practice....

Let's make it simple...

First, AF is based on the principle Of **co-evolution**

Let's make it simple...

First, AF2 is based on the principle Of co-evolution

Let's make it simple...

First, AF2 is based on the principle Of co-evolution

Let's make it simple...

First, AF2 is based on the principle Of co-evolution

If 2 residues are **correlated**, they should be **close in space**.

Inspired by https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-

https://twitter.com/pedrobeltrao/status/1501214534681378818

AlphaFold is a **new** and **powerfull** tool, but <u>not perfect</u>. It cannot replace experimental data or the expert's eye (« la patte de l'expert

Ramses, feu vert

One more thing

A few month ago, AF3 was release with « huge improvements »

Code released only 2 week ago. Only limited to 20 daily jobs until now. → Hard to have a extensive community validation!

Instead of! the **attention** mechanism, they use a **diffusion** mechanism, a bit like Dall-E or Stable Diffusion
<u>2. How to use</u> <u>AlphaFold?</u>

PART II

AlphaFold2 – How to use it ?

ColabFold using Google Colab

freely accessible & uses Google's ressources (https://colab.research.google.com/github/sokrypton/ <u>ColabFold/</u>)

ColabFold: Mirdita et al 2022

AlphaFold@I2BC using ColabFold's pipeline

BIOg2	AlphaFold2@I2BC						
Your previous jobs * Run a job	Use this tool to predict the structure of single or multimeric proteins						
Help pages	Click he	ere to run AlphaFold					
Back to Home page	or checkout the usage and output help pages						
	Latest news 2023/05/31: Static minimisation of your model 2023/03/34: MSA-mode 2023/03/34: MSA-mode 2023/03/34: MSA-mode 2023/03/06: MSA-mode 2023/03/06: Stoom!	nowledgements assemention us in your widdgements and keep us med of your publications.	Job history Job history is only stond in vour web cache and not associated to your user account. Note that job nesults are only kept for <u>30 days</u> .				
	Output examples Example 1: GLCNE kinsse (Unioret GPV223) - single protein with 2 domains Example 2: hemograderi (2 alpha + 2 beta subunits) - protein complex						
	Contact us		Back to top of page				

https://bioi2.i2bc.paris-saclay.fr/django/alphafold/

- -> Its strength lies in the prediction of protein complexes (up to 3 000 AAs total)
- -> User-friendly & fast
- -> Within the I2BC (I2BC resources & storage, access restricted to users with an I2BC account)

Multipass login & password => use the Multipass website to get your credentials if not sure: <u>https://multipass.i2bc.paris-saclay.fr/</u>

- A few stats since march 2023: 86 users, 1570 jobs
 - Run time increases exponentially with input sequence length
 - Input < 1000 AA (~70% of jobs) with default options, run time should be less than 25 minutes

Time per model x recycles x repeats

BIOg2	AlphaFold2@I2BC						
Your previous jobs -	Enter your inputs						
Run a job	Please enter an amino acid sequence (left tab) or multiple sequence alignment (MSA, right tab) but not both.						
Help pages	Sequence mode MSA mode						
Back to Home page	Please only submit a single sequence or use ":" to specify inter-protein chainbreaks for modelling complexes as shown below. Queries should be submitted in FASTA format and should not exceed 3000 AAs in total.						
	Copy-paste your sequence in the box below:						
	MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLL SHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR: MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR: MVHLTPEEKSAVTALWGKVN VDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKE FTPPVQAAYQKVVAGVANALAHKYH: MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGL AHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH						
	Or upload a fasta file:						
	Brows	e					
	Job name (optional, please avoid any special characters)						
	Send me an email with the job link						
	Advanced options						
	Submit Reset fields						

<- 2 input modes available: sequence or MSA

In both cases, you can either:

<- copy-paste your input

Oľ

<- upload it in the right format

<- adding a job name is optional

<- advanced options

AlphaFold@I2BC's specific pipeline:

40 CPUs "big ram" = 40 jobs at most

(very quick)

6 GPUs = 6 jobs at most (bottleneck as longest step)

AlphaFold2 @I2BC - advanced options

<u>3. How to</u> <u>understand</u> <u>predictions?</u>

PART II

AlphaFold – output

AlphaFold outputs quality estimates of your models at 3 levels:

Global level _

Per residue level -

Per residue pair level -

Per-residue score

Based on an already-existing **similarity score (IDDT)**, used to compare 2 structures, usually a model vs a real structure:

AlphaFold – output

AlphaFold outputs quality estimates of your models at 3 levels:

- Per residue level = **pLDDT**

- Per residue pair level

Global scores

 Average pLDDT: average over all residue scores in the model ([0-100]) => used to rank models in case of monomers The other global scores are all based on another similarity score, also used to compare 2 structures:

ipTM-score => used to rank multimeric models

AlphaFold – output

AlphaFold outputs quality estimates of your models at 3 levels:

Global level = average pLDDT + pTM-score + [ipTM-score + combined pTM-score (multimers)] -

Per residue level = **pLDDT**

Per residue pair level _

resl 🔹 res2

Large-scale topology (i.e. how accurate is the relative placement of the domains?)

About PAE: https://alphafold.ebi.ac.uk/faq#faq-13

0

How to read the plot:

You can read it as: distance between residues x & y is equal to D +/- E

- E: error between x & y in the plot above
- D: distance between x & y in the model

About PAE: https://alphafold.ebi.ac.uk/faq#faq-13

9

How to read the plot:

The distance between residues GLU-51 & VAL-62 is equal to 25 +/- 4 Å

= high confidence in relative position

-> linked to GLU-51 and VAL-62 being in the same structural domain

You can read it as: distance between residues x & y is equal to D +/- E

30Å

20Å

10Å

200

Met 204

- E: error between x & y in the plot above
- D: distance between x & y in the model

About PAE: https://alphafold.ebi.ac.uk/faq#faq-13

ASF1

How to read the plot:

The distance between residues MET-1 & MET-204 is equal to 49 +*I*- 27 Å = *low confidence in relative position*

You can read it as: distance between residues x & y is equal to D +/- E

- E: error between x & y in the plot above
- D: distance between x & y in the model

About PAE: https://alphafold.ebi.ac.uk/faq#faq-13

This plot is **mainly a general view**, it should not be read pixel by pixel!

If you remember, it measures the confidence of:

- \circ Domain packing
- Large-scale topology => of which potential interfaces!

e.g. N-ter dimer of pORF1:

Interacting regions between sections (within a same protein or between different protein chains) usually show up as low-error patches that aren't along the diagonal

AlphaFold – output

AlphaFold outputs quality estimates of your models at 3 levels:

- Global level = average pLDDT + pTM-score + [ipTM-score + combined pTM-score (multimers)]

- Per residue level = **pLDDT**

- Per residue pair level = **PAE**

It also outputs summary plots for your MSA

About the MSA plot

MSA plot = summary of your MSA (seq id + coverage)

=> number of sequences covering each position along your input sequence

SEC39 (Q12745) **complex** with 2 other partners

=> 1 horizontal line per sequence in your MSA coloured by sequence identity with your input sequence

Recent PDB (8FTU), released after AF2 was trained, trimer between SEC39, DSL1 and USE1

COLUMN CONTENT DATA BANK A 202,292 Structures from the structures from the structure from		Enter search term(s), Entry ID(s), or sequence Advanced Search Browse Annotations	Include CSM @
	NUCLEIC ACID WWWPDB OF PDB-	Dev	
Structure Summary 3D View Annotations	Experiment Sequence	Genome Versions	
Biological Assembly 1	Crystal structure of the SN Revised Use1 structure PDB DOI: 10.2210/pdb8FTU/pdb Classification: TRANSPORT PF Organism(s): Kluyveromyces lac Expression System: Escherichia Mutation(s): No ⁽¹⁾ Deposited: 2023-01-13 Release Deposition Author(s): Travis, S. Eunding Organization(s): Nation	VARE Use1 bound to Dsl1 complex subu • Entry: 8FTU supersedes: 6WC4 ROTEIN ttis NRRL Y-1140 a coli BL21 d: 2023-03-01 M., Jeffrey, P.D., Hughson, F.M. hal Institutes of Health/National Institute of General	Display Files ▼
O 3D View: Structure 1D-3D View Electron Density Validation Report Global Symmetry: Asymmetric - C1 Global Stoichiometry: Hetero 3-mer - A1B1C1 Find Similar Assemblies	Experimental Data Snapshot Method: X-RAY DIFFRACTION Resolution: 5.73 Å R-Value Free: 0.298 R-Value Work: 0.276 R-Value Observed: 0.278	WWPDB Validation ① Metric Rfree Clashscore Ramachandran outliers Sidechain outliers Worve Percentie relative to all X Decentie relative to all X	Percentile Ranks Value 0.299 19 0.1% rny structures structures of similar resolution

 \rightarrow low pTM-scores => expected given the long shape of the protein (pTM-scores are calculated using the PAE matrix, i.e. the red in the matrix

pulls the score down)

average	pTM-
pLDDT	score
87.58	0.67

Sliding window along the diagonal of confident relative positions along the structure

...but relative position of Nter vs Cter is unsure

SEC39 + DSL1 + USE1 full lg DSL1 **USE1**

SEC39

 \rightarrow good pLDDT scores (mostly blue) except extremities and loops \rightarrow uses all sequences found (paried+unpaired & redundancy, ~100)

pTMipTM-Combined average Experimental structure vs prediction pLDDT score score pTM-score What do you think? 75.86 0.60 0.59 0.592 What now? \rightarrow low pTM-score \rightarrow low ipTM-score even though 8FTI good interfaces vs true structure

https://bioi2.i2bc.paris-saclay.fr/django/alphafold/288fb6ea-bdd5-465f-8fa2-a336777e6e0e/summary

100

https://bioi2.i2bc.paris-saclay.fr/django/alphafold/ceb5190b-cc2e-4621-91a8-c0fb5921a628/summary/

SEC39 + DSL1 + USE1 trimmed

 \rightarrow we loose nearly all paired sequences (~45 unpaired / protein)

- \rightarrow low pTM-score
- \rightarrow ipTM-score is slightly better but still low
- \rightarrow we still see low-error regions @interfaces

SEC39 Cter + DSL1 Nter

 \rightarrow very globular, very good scores even though predicted interfaces

are very similar to the previous predictions

average pLDDT	pTM- score	ipTM- score	Combined pTM-score
83.29	0.81	0.85	0.842

loop

B

Take home message: Scores aren't absolute and depend on the context -> playing on protein trimming or MSA

https://bioi2.i2bc.paris-saclay.fr/django/alphafold/6a55a9cd-0d5d-4163-a03b-6ea38cc56ec4/summary/

Cter alpha-helix

<u>Goal</u>: We want to study the structures of the pORF1 HEV polyprotein

<u>About pORF1 HEV</u>: UniprotID : P33424 <u>https://www.uniprot.org/uniprotkb/P33424/entry</u> Status : Reviewed

=> Have a look at the UniProt page for this protein, is there a structure available?

Virology Volume 578, January 2023, Pages 128-140

De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation

Sonia Fieulaine ¹ 🖉 🖾 , Thibault Tubiana ¹ 🖾 , Stéphane Bressanelli 🝳 🖾

Show more 🥆

😪 Share 🍠 Cite

https://doi.org/10.1016/j.virol.2022.12.002 🤊

Get rights and content 2

<u>Goal</u>: We want to study the structures of the pORF1 HEV polyprotein

About pORF1 HEV: UniprotID : P33424 <u>https://www.uniprot.org/uniprotkb/P33424/entry</u> Status : Reviewed Structures : 1 X-ray (residues 510-691 only!!) No AlphaFold models!! Why? -> most of the viral proteins are excluded from automatic AlphaFold model generation...

Problem :

-> We don't have the full-length structure (no experimental data yet)-> Protein is quite big (1700 aa)

<u>"Solution"</u>: We can *predict* the structure ourselves

NB: Results of this study were made on local desktop with RTX A6000 + a lot of models + templates for the best one + minimisation with Isolde. But we'll be using the AlphaFold@I2BC server instead.

Virology Volume 578, January 2023, Pages 128-140

De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation

Sonia Fieulaine¹ 🖉 🖾 , Thibault Tubiana¹ 🖾 , Stéphane Bressanelli 🝳 🖾

Show more 🥆

😪 Share 🍠 Cite

nttps://doi.org/10.1016/j.virol.2022.12.002 🤊

Get rights and content

<u>Goal</u>: We want to study the structures of the pORF1 HEV polyprotein

=> no existing full-length structures in the known databases

=> We managed to predict a structure with AlphaFold, now what?

De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation

Sonia Fieulaine¹ 🔍 🖾 , Thibault Tubiana¹ 🖾 , Stéphane Bressanelli 义 🖾

Show more 🥆

😪 Share 🍠 Cite

https://doi.org/10.1016/j.virol.2022.12.002 л

Get rights and content :

<u>Goal</u>: We want to study the structures of the pORF1 HEV polyprotein

=> no existing full-length structures in the known databases

=> We managed to predict a structure with AlphaFold, now what?

... can we find any similar structures?

-> Let's search for structural homologs based on our models!
Foldseek (quick and dirty): <u>https://search.foldseek.com/search</u>
Dali (slow but more accurate): <u>http://ekhidna2.biocenter.helsinki.fi/dali/</u>

De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation

Sonia Fieulaine¹ & 🖾 , Thibault Tubiana¹ 🖾 , Stéphane Bressanelli & 🖾

Show more 🥆

😪 Share 🍠 Cite

https://doi.org/10.1016/j.virol.2022.12.002 🤊

Get rights and content 2

Results: job.pdb	KKKKKKKKK	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE							
ALL DATABASES	AFDB-PROTEOME (2)	AFDB-SWISSPROT (1)	ļ	AFDB50 (77)	GMGC	SL_ID (0)	MGNIFY_ESM30 (1000)	PDB10	0 (35)
PDB100 35 hits								GRAPHICAL	NUMERIC
Target	Description (?)	Scientific Name	Prob.	Seq. Id.	E-Value	Position in query		0	Alignment
<u>6nu9_A</u>	Crystal Structure of a Zinc-Binding No	<u>Hepatitis E virus (strain Pakistan)</u>	1.00	95.4	8.37 e- 27	51	5 689		≡
<u>4n0o_C</u>	Complex structure of Arterivirus nons	Equine arteritis virus Bucyrus	1.00	20.5	9.93e-9		959 1191		=
<u>3ew5_B</u>	Structure of the tetragonal crystal for	Feline infectious peritonitis virus (strai	1.00	16.6	2.97e-5		779 925		=
<u>3jzt_E</u>	Structure of a cubic crystal form of X	Feline infectious peritonitis virus (strai	1.00	19.8	3.12e-5		778 925		=
<u>3eti_C</u>	Structure of a cubic crystal form of X	Feline infectious peritonitis virus (strai	1.00	18.7	5.83e-5		778 925		=
<u>5ziu_A</u>	Crystal structure of human Entervirus	enterovirus D68	1.00	13.5	2.40 c- 8		1267	1661	=
<u>5y6z_A</u>	Crystal structure of the coxsackieviru	Coxsackievirus A16	1.00	12.2	2.81 c -8		1246	1661	=

 \rightarrow Let's try with something... smaller!

After all, a dodecamer is 6 dimers right? And a dimer is easier to predict!

Could our protein be, in fact, dodecameric? Let's try with AlphaFold!

AlphaFold 2.2 - 10mer*

AlphaFold 2.3 - 12mer

With large systems, the prediction decreases in accuracy leading to bad contact prediction as well as bad local folding...

- Need a tremendous amount of memory
- Very long computing time

Could our protein be, in fact, dodecameric? Let's try with AlphaFold!

2000

Could our protein be, in fact, dodecameric? Let's try with AlphaFold!

Could our protein be, in fact, dodecameric? Let's try with AlphaFold!

Could our protein be, in fact, dodecameric? Let's try with AlphaFold!

Could our protein be, in fact, dodecameric? Let's try with AlphaFold!

2000

Real Life Demo

And AlphaFold 3???

Real Life Demo

 \rightarrow We already ran AlphaFold2 for you on the Nter dimer of pORF1 => that's what we're going to be working on today

AlphaFold@I2BC page: <u>https://bioi2.i2bc.paris-saclay.fr/django/alphafold/ORF1_Nter_dimer/summary/</u>

We also deposited the results on Zenodo: <u>https://doi.org/10.5281/zenodo.10014952</u> DOI 10.5281/zenodo.10014952

End of the story...

In our case, we

- 1. used Alphafold to generate a model
- 2. databases to find homologues
- 3. made a oligomerisation hypothesis base on structural homologues
- 4. We study now its membrane interaction.